
6. L A. Vulis, V. T. Zhivov, O. A. Kuznetsov, and L.P. Yarin, Inzh.-Fiz. Zh., 21, No. 1, 58-62 (1971). 

7. B. Weidemann and B. Hanel, Luft- und Kaltetechnik; 24, No. 3, 119-124 (1988). 

8. R.A. Seban, M. M. Behnia, and K. E. Abreu, Int. J. Heat Mass Transl., 21, 1453-1458 (1978). 

9. T. Mizushina, F. Ogina, H. Takeuchi, and H. Ikawa, Wilrme- und Stoffabertragung~ 16, No. 1, 15-21 (1982). 

RHEODYNAMICS AND EXCHANGE OF HEAT IN THE FLOW 

OF POLYMERIZING FLUIDS IN A CYLINDRICAL CHANNEL 

Z. P. Shul'man, B. M. Khusid, I~. V. Ivashkevich, 
V. B. l~renburg, and N. O. Vlasenko 

UDC 532.135:541.64 

We examine a method by which to study the rheokinetic factor in an investigation of the hydrodynamics and heat exchange 
of reactive oligomers. 

The development of scientific foundations for chemical formation, i.e., of methods to produce composition materials through 

the utilization of reactive oligomers, requires analysis of the role played by the rheoldnetic factor in the problems of hydrodynamics 

and convective heat exchange in rheologically complex reacting media. The flow of reactive oligomers is accompanied by polymerization 

which leads to an increase in molecular mass and correspondingly to an increase in viscosity, by several tens of orders. To calculate 

the thermohydraulic characteristics of the flow, it is essential that we know the kinetics involved in the change in composition viscosity, 

i.e., rheokinetics. 

In order to study the role of the rheokinetic factor, we employ the method of xpace--time separation (STS) between the 

thermochemical and thermohydrodynamic states [1]. A nonmoving composition is hardened in a reservoir (the thermochemical 

stage). Neither the flow channel nor the liquid heat exchange are, for all intents and purposes, encumbered by the kinetics of 

polymerization (the thermohydrodynamic stage). The constant-pressure unit consists of an individually thermostatted reservoir 

and of a channel with identical or different temperatures. An t~D-20 epoxy resin was used in the experiments in addition to a 

metaphenylene diamine hardener. The STS is achieved through special selection of regime parameters: de/d r << 1 (d r and d e represent 

the diameters of the reservoir and the channel); tstay -- tkin, (tcha/tres) ~ 0.2; tres/tk~ n << 1 (tstay, tcn a, tre s, and tki n represent the 
stay times within the reservoir, the time of motion through the channel, and the time of reservoir evacuations, in addition to the 

characteristic hardening time). The optimum regimes for the carrying out of these experiments in terms of the initial polymerization 

temperature, the ratio of reagents, and the length of time that the hardening composition remains within the reservoir, these were 

all determined from the condition of proximity of this process to the isothermal state. Thus, the initial process temperatures were 

60, 65, and 67.5~ the reagent ratios were assumed to be stoichiometric, while the stay time of the reacting mixture in the reservoir 

varied from 30 to 60 min. The effect of rheokinetics on convective heat exchange in a partially polymerized composition was investigated 

for the case of a nonisothermal flow through a round channel with a constant wall temperature of T w = 40~ The thermophysical 

characteristics of the composition were as follows: density p, thermal conductivity A, thermal diffusivity a, in the range of 40-70~ 

where they change only slightly as heating takes place [2]. They were therefore assumed to be constant and, on the average, equal 
to: A = 0.153 W/(m.K); p = 1.14-103 kg/m3; and a = 0.86-10 -7 m2/sec. 

With consideration of the chemical and rheological kinetics, we selected two stay times of the reacting mixture in the reservoir 

for the hardening composition,namely t = 30 and 35 rain. These corresponded to the following depths of cnversoin: fl = 0.072 
and 0.088. Three fixed loads were used for each of these, and two of these, i.e., Ap = 3.65.104 and 6.547.104 Pa, were reproduced 

for all stay times. The range of velocities 0.003-0.18 m/sec was chosen from the following conditions: a) the extent of the initial 

thermal segment is greater than the channel length (approximation of the thermally short channel); b) the flow time is sufficiently 

large to permit the mean-mass temperature metering probe to attain a steady regime at the inlet to the channel. Since the coefficient 

of thermal diffusivity for the epoxy compositions is small, the Peclet criterion (Pe), even at such low flow rates, amounts to (0.6-5). 103, 
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Fig. 1. Reduced viscosity of the hardened composition as a function of the fraction 

of reacted primary amines and as a function of the conversion ratio at various 

initial temperatures for the polymerization process: 1) T o = 60~ 2) 65; 3) 67.5. 

while the relative length of the thermal segment is 55-110 calibers. Thus, the heat exchange occurs in the region of the thermal 

initial segment. During these experiments we measured: a) the temperature Tin of the medium at the inlet to the channel; b) the 

mean mass temperature Tou t at the outlet from the channel, based on the readings of a special probe which averages the temperatures 

through the cross section; c) the wall temperature T w at three points; d) the mean volumetric flow rate for the polymerizing liquid 

in the channel, based on the rate of reservoir evacuation and the open cross section of the channel. Reliability of experiments 

on convective heat exchange for the polymerizing liquid was confirmed by data for a nonhardening resin. These demonstrated good 

agreement between the Nusselt number as a function of the inlet and channel-wall temperatures, in conjunction with the familiar 

Zider--Tate correction factor. Thus, the exponent in the temperature-viscosity correction factor ranged from 0.11 to 0.18, which 

is rather close to the normally accepted average value of 0.14. Measurement of the temperature relationship between the viscosity 

of the nonhardened "pure resin" demonstrated that it is described by the equation 

qo = a e x p  [ - -  b (T .-- To)], O) 

where a = 10.78 Pa.sec, b = 0.114 1/~ T 0' = 298 K. The activation energy of the viscous flow in a nonhardened resin amounts 

to E,7 = bRT02 = 84 kJ/mole [1]. The effect of the shearing velocity on the viscosity of the polymerizing liquid is determined 

by the change in the load on the piston at a given conversion ratio. For the range of shearing velocities studied here (100-500 

sec -1) we have ascertained a Newtonian nature for the flow curve (thrust versus the flow characteristics, as straight lines) and the 

independence of viscosity relative to the rate of strain [1]. 

The numerical calculations of thermal and kinetic polymerization parameters for the epoxide composition were carried out 

on the basis of a macrokinetic model [3]. Analysis of the model's phase portrait demonstrated that it correctly reflects the features 

encountered in hardening kinetics: the final makeup of the composition corresponds to a stable point of rest [4]. Based on the 

found fields of reagent and temperature concentration in the reservoir, we have calculated the local and volume-averaged temperature 

T and the conversion ratio/3. The integral characteristics for various stay-time regimes for the composition in the reservoir are 

subsequently utilized as the initial parameters in experiments involving flow and convective heat exchange in the channel. 

Numerical calculation of polymerization in the reservoir and measurement of viscosity for various stay times allows us to relate 

the viscosity with the makeup of the hardening composition. We then measure the viscosity values l/(t) for each selected instant 

of time t and for a specific value for the hardening temperature T w. The mean-integral temperature T(t) in the reservoir and the 

makeup of the composition at this same instant of time are determined from the numerical calculation. Based on an advanced 

measured function r/(T) for the resin, we calculate the value of rl0(T), corresponding to the found temperature. We then analyze 

the relationship between the reduced viscosity r/(t)/r/0(t ) and the makeup of the composition at the instant of time t (Fig. 1). The 

linkage of viscosity with the fraction of joined epoxide groups (or reacted primary amines) was found to be independent of T w. 

Using the method of least squares to process the data, we were able to demonstrate the adequacy of both of these concepts. However, 

in the dependence on fl (the fraction of bound epoxide groups) dispersion is lower. As fl increases, viscosity rises exponentially: 

q -- a exp T To q- c[~ , [~ ~ 0,221 (2) 

where a = 10.78 Pa.sec, c = 19.7, and T o = 298 K. 
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The activation energy E = 84.1 kJ/mole for the viscous flow is determined exclusively by the properties of the resin. The 

convective heat exchange at theinlet thermal segment is determined for Peclet numbers (0.7-5).103. The Nusselt number as a function 

of the Peclet number in the case of  nonisothermal flow for a partially hardened composition is found to be the same as in the case 

of a Newtonian fluid with the Zider--Tate nonisothermal correction factor: 

1 

Nu = C Pe d ( % / ~ s  (3) 

Here r/~/r/l = exp [(E/R)(1/T w - -  l/T/)], T l = T w - -  1/2(Tou t - -  Tin ) : In [(T w - -  Tin)/(T w - -  Tout) ] is the effective temperature; Tin 

and Tou t are the temperatures at the inlet to the channel and at the outlet from the channel. The values of  C are found to range 

between 1.55-1.86, as is the case for the Newtonian fluids [5]. The viscosity ratio in (3) is independent of the conversion ratio at 

the inlet to the channel and is determined by the temperature relationship for the viscosity of  the nonhardened resin. Processing 

of  hydraulic resistance data for a channel in the nonisothermal regime demonstrated the possibility of  using the Poiseuille formula 

with effective viscosity in the form r/eft -- r/in exp [(E/R)(1/T/-- 1/Tin)I, where r/in represents the viscosity of  the composition at 

the inlet to the channel. Combined solution of the equations for hydraulic resistance and heat exchange allows us to calculate 

the characteristics of  the nonisothermal flow for a partially hardened liquid at a given pressure difference AP. We used the following 

parameters: Pe = RePr is the Peclet number, calculated on the basis of the viscosity for a partially hardened liquid at thechannel 

inlet; Gz = Pe d/L, St = 4Nu/Gz, B = (E/RTw)~ are the Graetz and Stanton numbers, as well as the Pearson criterion, characterizing 

the relative change in viscosity due to the relative temperature difference x = (Tin - -  Tw)/T w across the channel: 

•  1 2 S-t-}-• [ 1 -  exp ( - -  St)] ' 

(4) 

Gz 2/3 ~ -]- 0,5• [1 - -  exp ( - -  ~)1 " 

The O"~ and S--t" numbers are distinguished from traditional numbers by the factors 4hr and d/4L, respectively. The first equation 

defines the hydraulic resistance in the nonisothermal regime, while the second equation determines the convective heat exchange. 

Analysis of  system (4) showed that when x _< 0 (the flow out of  the cold reservoir into a hot channel) its solution is singular. When 

~; > 0, it is possible to have two solutions which correspond to the low-temperature and high-temperature flow regimes. Their 

appearance from system (4) is associated with the use of  the approximate method beyond the limits of  its applicability. 

The derived system of equations describes the exchange of  heat and resistance in the one-dimensional approximation. To 

evaluate the area of  applicability for such an approximation, let us examine the problem of nonisothermal liquid flow through a 

circular tube in the boundary-layer variant, under the action of the constant force F of  piston downstroke. We will take into consideration 

the relationship between viscosity and temperature, the remaining physical properties assumed to be constant. We will adopt the 

following assumptions, serving as the base for the method of  calculating heat exchange and resistance at a constant rate of  flow: 

a) in the inlet section of  the tube the velocity profile is developed and parabolic; b) the temperature of  the liquid at the inlet is 

distributed uniformly through the cross section, while the temperature of the wall is constant over the surface; c) the thickness 

A of  the thermal boundary layer is significantly smaller than the tube radius R0; d) the transfer of  heat along the axis as a consequence 

of heat conduction is small in comparison to the transfer of heat ascribed to the flow; e) we can neglect the evolution of  heat due 

to viscous dissipation. Instead of  the exact equation of momentum and energy conservation, according to the method from [5], 

we use approximate equations which, in the variables O = (T - -  Tw)/(T 0 - -  Tw), W X = VxN 0, W v = VyN0, X = x/R 0, Y = y/R 0, 

and K = A/R 0, have the form 

1 - Y  a-Y ( 1 - - Y ) ~  =B(X), (5) 

1 a [ (1_y)  ~ a~x ]=A(X)  ' (6) 
1 - -  Y O Y  ~lo OY 

aVe x _~ ~ a [ (1 - - IT)  I v y ] = o .  (7) 
OX 1 - -  Y aY  
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Here 

t 0___~( Ro P ' Rew ' . .  OWx . OWx) 
A ( X ) = i /  OX Vo 'lw) q - ~ (  w x - - ~ + W r ~  - -  

ox ~w o ~  (~ - Y) ( l - - Y )  n w ox dr,  

i[ oo oo] P e Wx ~ + W v - ~ -  dY, 
B (X) = 2K o 

P e = P e o V ,  Peo = 2RoVo , ~ _  Vm 
a Vo 

For the characteristic velocity we assume V 0 = F/(8~rr/oL ), i.e., the mean velocity of  the liquid which it would exhibit if its 

rheological properties had been determined at the inlet temperature [r/0 = ~(T0), L is the length of the tube]. The boundary conditions 

are as follows: 

when X ~.~ O; Y = 0 O = O; Wx = Wr = O, 

when X ~ O; K -~ Y ~ 1 O = 1; OO/OY = O, 

when X'~O; Y = 1 OWx/OY = O. 

Having solved Eq. (5) under condition (10) and limiting ourselves to the third-order terms of Y/K, we obtain 

(9) 

(10) 

(11) 

B = - -  o / [ K  ~ (3 - -  K)I,  (12) 

o - c 1 ( / ~ -  K -  + c ~ ( ~ < >  - - + c ~ ( K )  , 

where CI(K ) = 3(2 - -  K)/(3 - -  K), C2(K ) = --3(1 - -  K)/(3 - -  K), and C3(K ) = - ( K / ( 3  - -  K)). 

For the relationship between yield and temperature we take the Arrhenius approximation 

~lw_~(@, p, B ) =  e x p (  ~0 ) 

where 

O-- T- -Tw , , ~ _  .v , ~ _  T i n - - T w  _ • 

Tin - -  Tw 1 - -  ~ T in :4 -At- 1 

(13) 

(14) 

(k << 1, 1) = E/RTin is the Franck--Kamenetskii  parameter, characterizing the thermal sensitivity of  the liquid and where F = 

t)k is the Pearson parameter  which determines the change in the effective viscosity, due to the radial difference in the temperatures 

Tin and Tw). In using the method from [5] we will expand 9 ( 0 ,  F, B) in powers of  O. In many cases of  practical importance the 

quadratic approximation is sufficient: 

where 

(0) = 1 + a~O + a~O z, 

a 1 = (1 - -  ~)(expF - -  1); a2 = ~ (exp P - -  1)when IF[ ~ 0,5, 

a1=~,(l-+-~); a ~ = y ( - ~ - ' ~ - - ~ ]  when [ F [ < 0 , 5 .  
\ z  / 

(15) 

The parameter  A is taken from the condition of  monotonicity for the approximation curve and equality of  the functions 9 ( 0 ,  F, 

I)) and its approximation 9 ( 0 )  at the ends of  the interval, as well as the derivatives at one of the ends of  the region. The natural 

condition of a minimum in the mean-square error does not ensure the monotonicity of  the derived curve (15). 

From (13) and (14), in explicit form, we obtain the relationship between viscosity and the transverse coordinate 

~= (16) 
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where b 0 = 1, b x = aacl, b2 = alc2 + cq2a 2, b 3 = ale 3 + 2a2clc 2, b 4 --- a2(c2 2 + 2CLC3), b 5 = 2a2c2c 3, b 6 = a2c2; n = 3m. 

From relationships (6), (11), and (16), with consideration given to the conditions of equality between the total flow rates in 
the boundary layer and in the core, common to the previously unknown rate of liquid flow, we find the profile of longitudinal velocity 
and then, now that we know this quantity, from the equation of continuity (7) we determine the transversevelocity. From relationship 
(12) we then find 

where 

Vgt (K) = 2 Gzo 1 , (17) 

K 2 

L 8a~]o~X ' 

1 Kz(3--K) / I ~  ~ { [ d~ 
~ ' K ) - I 2  (l_..2K__) "i..~ o \ - -~ -  b~ K (i + 2)(i + 4) + 

do- ds ] 2i + 3 [ d~ 
+ ( i + 2 ) ( i + 5 )  + ( i + 2 ) ( i + 6 )  i + 1  ( i + 1 ) ( i + 3 )  + 

do- d3 ]_KS [ d~ 
+ (i -I- 1)(i + 4) -{- (i -t- 1)(i + 5) (i -4- 2)(i + 5) -t-- 

do- d~ ]}+ 6 
+ ( i+2)(i+6) + ( i+2)( i+7)  3~----i-K • 

n X '~ bi (iR + T)--KRbi I 1 
R 2 [ (i + 1)(i + 2)(i + 3)(i + 4) i~O 

2 (i + 2) K (i 2 + 6i + 3) K ~' - -  + 
(i + 1)(i + 2) ... (i --}- 5) (i -I- 1)(i + 2)... (i + 6) 

d 1 

i ( i + 4 )  Kz 1 \  
(i + 1)(i + 2)... (i + 7) J / '  

3 ( - - K O - + 4 K - - 6 )  ; do.= 6(K 2 - 3 K + 3 )  
g (3 -- K) z K (3K) 2 

d,~ = 3 ( K - - 2 )  ; Pe0--  V/~ , 
(3 - - / 0 2  a 

here 
R = Po + P1K + Po-K z + PaK s + P,~Ka; 

Po- -  
1 n 

~lte ~lw b~ 3 ~qw ;' P1--  + ' 9 '  ; P2--  
4 rio ~lo ~i=o i + 1 2 ~0 

- - 3 ~  b~ ; p~ *lw + 3 ~  bi . 
~=o i + 2  ~o ~=o i + 3  

1 ~l.__w 2 bi 
P ~ -  4 n0 i=0 i ~ 4  

The second relationship, linking I~ = K(L) with the dimensionless mean-flow velocity ~7, is found from the law of the conservation 
of momentum by integration over the entire volume of the channel: 

' 2 Z 
d "( [W~ (/-~, Y ) - -  W~r (0, Y ) ] ( 1 -  Y)dY = ~ ~ ~ ~  OWx 

OY 
(x, 0) dx, (18) 
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where 

R%=2oVo R___ L ,  ~ =  ~- s  L 
% 2~pvgRg ' Ro 

After substitution of the longitudinal velocity profile, we find 

here 

~'zg~ (~) = 16Gzol, (19) 

= (,,+,,_ +)pro, +2oxp(  ) /~__~ 13; P r 0 = (  Pa I - " ,  
\ ~lo / 

- ~ 1 ~ b,(K) bj(g? x 11 (K) ~- ~-z ; i17~ c (~, Y)(1 - -  Y) dZ -- - -  
o R z (K) (i + 1)(] -t- 1) i,]=O 

R3 
X i @ ] @  3 

[3ij -}- 5 (i q- i) @ 81/(~ [3i i @ 4 (i -q- i) @ 51 R 5 

( i +  1 ) ( / + l ) R  6 ] . 
(~ + 2 ) ( / +  2)(i + l + 6) J ' 

1 1 [( ~lw ]2( 1 1 ~ +  
I , ( K ) ~ V - ~ _ ~ W  2(L,  Y ) ( 1 - - Y ) d Y - -  R ~ ( ~  \ ~1o t k24 4 

K 

+-g.-K - -ff-~ -8- + - ~  + 2  x 
~ rlo / 

x - - 2 + 5 -  -i- 5- 
+ (@-~c+ --~-) ~(~ct ] ; 

e (~ )=  i b,(7()( ~----L- ~ .... ~ ). 
i=o , i @ 2  i@ 1 . ' 

OVCx (x, O) dX -- ~ (K) dK 
r.(x) =v-~ j' o---7- ~/~0 

System of equations (17), (19) serves to determine the thickness of the boundary layer at the outlet from channel 1~ and the 
dimensionless mean-flow velocity 9. It contains the four dimensionless parameters Gzo, Pro, ~, and 13. 

The values of the quantities 1~ and 9 enable us to determine the change in the thickness of the temperature boundary layer 
along the channel, and then to determine the temperature and velocity fields. The characteristics of heat exchange and resistance 
are found from the following relationships: 

[ ]-' N u ~ = 4  1H- 2(1- -K)Z l n ( 1 - - K )  
" K ( 2 - -  ~ ' 

--1 

N u = 2 G z o T '  ~ (K)  lq -  K ( 2 - - K )  

Rew R (K) V Re w 
(20) 

where Nu x = ad/A, ~x = AP/(P 92/2) are the local Nusselt number and the coefficient of resistance, respectively, while Nu = 
Z 

(fNu:~dx) /s -~= (f~,:dx) /E are integral quantities. 
0 0 

System (17), (19) represents a collection of transcendental equations. For its solution, we use an extension of the Pearson 
thermal sensitivity parameter F in conjunction with the Newton--Kantorovich method. For the initial approximation we select 
the boundary-layer thickness 1720 and the velocity value 90, which correspond to the flow of a medium with temperature-independent 
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properties, i.e., when ~ - 0. In this case, ~0 = 1, while the quantity 1~ o satisfies Eq. (17), which after transformation reduces to 
the relationship 

36 1 - - ~ K  = G z o  I. (21) 

Let us note that the case F = 0 has been examined in monograph [5]. The equation for I~ derived there differs from (21) by the 

coefficient of  the second term (in [5] it is equal to 9/40). This is a result of  the fact that we kept a larger number of  terms in the 

expansions for O and B in relationships (12) and (13). 

Figure 2 shows the change in the thickness of  the boundary layer and the associated evolution of the profiles of  temperatures 

and velocities, as well as of  the integral Nu number along the length of a circular tube (d = 3.10- 3 m, L = 0.1623 m, AP = const). 

The temperature profile, constant at the inlet to the tube, remains that way within the core of the flow. The intensity of  heat exchange 

is significantly weakened as the flow moves through the depth of the tube. The dependence of Nu and of the boundary-layer thickness 

on the longitudinal coordinate is approximately linear. Comparison of results from calculations based on integral and one-dimensional 

methods demonstrated that the one-dimensional relationships yield acceptable results only for Pr o _> 102'5, since here the Prandtl 

number is absent. For the integral method in this range of Prandtl numbers, its value exerts no influence on the characteristics 

of the flow and of heat exchange. Figure 3 shows the results from calculations of the regimes of flow and heat exchange for the 

t~D-20 nonhardened resin when Ap = 5.104-3.2.106 Pa, T o = 60~ derived by the one-dimensional and integral methods. The 

Nu Y 0 n~;580 

o,81- I/"V r-" 

_ O -b-4 Lqwy,-~§ 1 
0,z 

;~8 O58 

/ 
i wu -b-qLgWv 

o,. .~,6 o,8 

a 8,58 

/~ 
Nu 

~Wx. 

b 

r 
-44 b w; 
x/i.. 

Fig. 2. Evolution of the profiles for temperature, velocities, boundary-layer 

thickness, and Nu along the channel length. E = 84.1 kJ/mole; ~ = 3.245, 

= 28.67, ~ = 0.1133, Gzo -1  = 1.4841.10 -3, Tin = 8if'C, T w = 40~ Pr o = 554. 

Nu 

3O 

20 

10 1o, ls 

-1 
-~,o -4s -4o -z,s ~_~ Gz o 

Fig. 3. Comparison of results from calculations by the integral 

and simplified methods for Nu and St when l~ = 3039, Pr o = 

3100, F' --- 0.968: 1) C = 1.86; 2) C = 1.55; 3) A 2 ,/, 0. 
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value of Pr o = 3100 corresponds to the region in which this parameter is insignificant. Comparison of the results obtained in a 

calculation based on these two methods shows that the one-dimensional relationships are suitable for the calculation of the heat-exchange 

parameters in the region of average thicknesses in the temperature boundary layer. The N---~ = Nu(G--~ -1) curves for C = 1.55 

and 1.86 yield lower and upper bounds for values calculated by the integral method. In the region of a thin boundary layer, on 

the basis of one-dimensional formulas, the calculation error increases. It is associated with utilization of the effective viscosity 

calculated for T = T t in the formula for hydraulic resistance, i.e., the characteristic mean temperature through the boundary layer, 

rather than through the cross section of the channel. Acceptable in this case is the approximation in which, for purposes of calculating 

resistance, the effective viscosity is taken at the temperature of the inlet, while for purposes of calculating the heat exchange in 

conjunction with nonisothermicity, the Zider--Tate correction factor is utilized. The corresponding curves are indicated in Fig. 

3 by a dashed line. The temperature T t best characterizes the effective channel temperature in the calculation of hydraulic resistance, 

the thicker the boundary layer. The upper bound of the area of applicability for this simplified method is represented by the earlier-cited 

conditions of validity for the nonisothermal Zider--Tate correction factor. 

CONCLUSIONS 

We have proposed a method to investigate the effect of rheokinetics on the thermohydraulic characteristics of flow under 

pressure in polymerizing liquids and for the design of an installation with space-time separation of the thermochemical and hydraulic 

stages. For ED-20 epoxide resin with an amine hardener it has been established that below a hardening level offl_< 0.2 the viscous-flow 

activation energy does not change. It has been demonstrated that for a partially hardened composition the exchange of heat at 

the inlet thermal segment is determined by the same relationships as for a Newtonian fluid. We have developed and experimentally 

verified methods for the calculation of nonisothermal flow in a partially hardened liquid at the inlet thermal segment of a tube 

in the one-dimensional and two-dimensional boundary-layer approximations. 
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